DESIGN BEST PRACTICES FOR CLEAN ROOM ENVIRONMENTS

Architectural and engineering design plays a **pivotal role** in creating optimal clean room environments by ensuring proper airflow, minimizing contamination risks, and optimizing the layout for efficient operations.

Clean rooms are highly controlled environments. Whether in a pharmaceutical, biotechnology, electronics, clean manufacturing or a healthcare environment, clean rooms must maintain strict air quality and cleanliness standards. At HED, our integrated architectural, laboratory planning and engineering teams focus on the following critical aspects first to design clean rooms that meet the programmatic goals and compliance needs of our clients.

FACILITY LAYOUT AND ZONING

Fundamental to effective operations and contamination control, layout and zoning of a clean room facility must account for:

Separation of Clean Zones: Implementing a zoned approach by segregating the facility into distinct clean zones, such as gowning areas, buffer zones, and critical processing areas, helps minimize cross-contamination and ensures compliance with cleanliness standards.

Logical Flow of Materials and Personnel: Designing a logical flow of materials and personnel, with separate entry and exit points, prevents contamination from entering clean areas and facilitates efficient movement within the facility.

Clear Room Hierarchy: Establishing a clear hierarchy of clean rooms based on the required cleanliness level, from ISO Class 9 (least clean) to ISO Class 1 (most clean), ensures that contamination risks are minimized at each stage of the process.

Integration with Manufacturing: Establishing a clear line of demarcation between specific manufacturing requiring a clean room environment with other non-cleanroom critical spaces.

HVAC SYSTEM DESIGN

The design and implementation of Heating, Ventilation, and Air Conditioning (HVAC) systems are critical for maintaining the desired air quality and particle control in clean room environments, including:

Positive Pressure Cascades: Creating positive pressure differentials between adjacent clean rooms and non-clea areas prevents the infiltration of contaminated air, ensur that air flows from cleaner to less clean spaces.

High-Efficiency Particulate Air (HEPA) Filters: Installing HEPA filters in the HVAC system effectively removes particles of various sizes, contributing to the desired air cleanliness levels.

Proper Air Distribution: Achieving uniform air distribution within the clean room through carefully designed air diffusers and exhaust systems helps maintain consisten air quality throughout the space.

Humidity Control: Achieving precise low humidity environments designed to integrate with the HVAC syste to safely drop and maintain specified humidity levels for precise manufacturing.

Integrated Control: Designing the HVAC system to communicate and integrate with the Building Manageme System (BMS) to allow facility operations to have consta statistical data on room performance.

MATERIAL SELECTION AND FINISHES

Material and finish selection is crucial for minimizing particle generation and increasing the efficiency of cleaning practice Select materials and finishes to support:

Smooth and Non-shedding Surfaces: Choosing smooth a non-porous surfaces, such as stainless steel or epoxycoated finishes, reduces the accumulation of particles a facilitates effective cleaning and decontamination.

Minimizing Static Generation: Selecting anti-static materi or employing static dissipative flooring systems helps minimize the generation of static electricity, which can attract and disrupt airborne particles.

Compatibility with Cleaning Agents: Using materials that are compatible with the cleaning agents and disinfectants used in clean room environments ensures that the integrity of the materials is maintained while effectively eliminating contaminants.

LIGHTING & ENVIRONMENTAL CONTROLS

Proper lighting and environmental controls are essential for maintaining a comfortable and productive clean room environment that supports laboratory technicians, equipment, and results.

	Appropriate Lighting Levels: Designing lighting systems
an	that provide adequate illumination for work tasks while
ing	minimizing glare and heat generation contributes to a
	comfortable working environment for personnel.
	Temperature and Humidity Control: Implementing precise
	temperature and humidity controls helps ensure stable
	conditions within the clean room, which is essential for
	certain processes and the well-being of personnel.
I	Environmental Monitoring Systems: Installing
	comprehensive monitoring systems for temperature,
t	humidity, particle counts, and air pressure differentials
	allows real-time assessment of the clean room
	environment and helps identify potential issues that may
	affect air quality.
m	
	PERSONNEL FLOW AND GOWNING AREAS
	Efficient flow of people and materials and well-designed and
	placed gowning areas are critical for preventing contamination
o. n.t	from entering clean rooms. Key considerations include:
ant	Proper Cowning Protocols: Designing dedicated gowning
ant	areas with clear protocols and appropriate storage for
	cleanroom garments, including changing benches, lockers
	and pass-through cabinets, ensures that personnel adhere
ż	to necessary gowning procedures
S.	
	Separation of Dirty and Clean Areas: Maintaining a
	clear separation between dirty and clean areas through
and	designated airlocks and gowning zones prevents cross-
	contamination and ensures that personnel enter clean areas
nd	in the required attire.
	Flow of Personnel and Materials: Establishing well-defined
als	paths for personnel and material flow within the clean
	room facility minimizes the risk of contamination and
	ensures smooth and efficient operations.
	The correct consideration and planning from an experienced
	team can create a clean room that supports optimal
	operations minimizes contamination risks and ensures the

integrity of sensitive processes across a variety of industries.

Written by Todd Drouillard AIA, Business Leader Manufacturing and Project Development and Marilee Lloyd AIA, National Laboratory Planning Leader. Explore more market and design insights at <u>www.hed.design/insights</u>